SHALINI

ASSISTANT PROFESSOR (GUEST FACULTY)

VANIJYA MAHAVIDYALAYA,
PATNA UNIVERSITY, PATNA
CONTACT: 7903953783
EMAIL: shalinigalax@gmail.com

E- CONTENT FOR M.COM (SEMESTER- 2)

SUBJECT: MANAGEMENT ACCOUNTING
PAPER CODE: COMCC-9
UNIT- III: STANDARD COSTING AND VARIANCE ANALYSIS (Part III)
TOPIC: MATERIAL COST VARIANCE (PRACTICAL QUESTIONS)

NOTE: Refer previous pdfs content for theoretical part and formulae of this unit.

PRACTICAL QUESTIONS:

Ques. 1 The following particulars are regarding the standard and actual production of product X.

Standard quantity of material per unit
Standard price per kg
Actual Number of units produced
Actual quantity of materials used
Price of materials

5kg
Rs. 5
400 units
2200 kg
Rs. 4.80 per kg

Calculate material price variance and material usage variance.

Solution.

Actual output 400

Standard			Actual		
Qty.	Rate	Amt.	Qty.	Rate	Amt.
400X5	5	10,000	2200	4.8	10,560
$=2000$					

Above, we have to create table on the basis of actual output.
Standard Quantity = Standard quantity required for production of actual output

Standard quantity is quantity of materials used and calculated on the basis of actual output.
i) Calculation of Material Cost Variance (MCV)

Standard cost- Actual cost
=10000-10560
= Rs. 560 (Adverse or A)
ii) Calculation of Material Price Variance (MPV)
(Standard Price- Actual Price) X Actual Quantity
$=(5-4.8) \times 2200$
$=$ Rs. 440 (Favourable or F)
iii) Calculation of Material Usage Variance (MUV)
(Standard Quantity- Actual Quantity) X Standard Price
$=(2000-2200) \times 5$
= Rs. 1000 (Adverse or A)
To Check:

$$
\begin{aligned}
M C V & =M P V+M U V \\
& =440(F)+1000(A) \\
& =560(A)
\end{aligned}
$$

Ques. 2. In a factory, standard estimates for material for the manufacture of 1000 units of product Z is 400 kg at 2.5 per kg . When 2000 units of product Z are produced it is found that 825 kg of materials are consumed at Rs. 2.70 per kg.
Calculate material cost variance.

Solution.

			Actual Output= 2000		
Standard			Actual		
Qty. of Material 800* kg	$\begin{aligned} & \text { Rate } \\ & 2.5 \end{aligned}$	Amt. 2000	Qty. of Material 825 kg	$\begin{aligned} & \text { Rate } \\ & 2.70 \end{aligned}$	$\begin{array}{r} \text { Amt. } \\ 2227.5 \end{array}$

*1000 u ------------- 400kg
Std. qty. required for 1 unit $=400 / 1000 \mathrm{~kg}$
Std. qty. for actual output $=400 / 1000 \times 2000=800 \mathrm{~kg}$
i) Material Cost Variance (MCV)
$=$ Std. Cost - Actual Cost $=2000-2227.5=227.5(\mathrm{~A})$
ii) Material Price Variance (MPV)
$=$ (Std. Price - Actual price) X Actual Qty.
$=(2.5-2.7) \times 825=165(\mathrm{~A})$
iii) Material Usage Variance (MUV)
$=$ (Std. Qty. - Actual Qty.) X Std. Price
$=(800-825) \times 2.5=62.50(\mathrm{~A})$

To Check:

$$
\begin{aligned}
\text { MCV } & =\text { MPV + MUV } \\
& =165(A)+62.5(A) \\
& =227.5(A)
\end{aligned}
$$

Ques.3. Calculate various variances on the basis of following information:
Qty. of material purchased

Value of material purchased Rs. 9000
Standard quantity of material required for1 tonne of finished product. 25units
Standard rate of material
Opening stock of material
Closing stock of material
Finished product during the period

Solution:

Output= 80 Tonnes

	Standard	Cost		Actual Cost	
Qty.	Rate	Amt.	Qty.	Rate	Amt.
2000	2	4000	2500	3	75500
(1)	(2)		(3)	(4)	

Working Note:

(1) 1 ton $=25$ units of materials

80 tonnes $=25 \times 80=2000$ units
(2) Standard Rate of Material is Rs. 2 p.u.
(3) Material Consumed for production
= opening stock + Purchase - Closing Stock
$=100+3000-600$
$=2500$ units
(4) Actual Rate of Material Purchased

9000/ 3000= Rs. 3 p.u.

Calculation of material cost variance= Standard cost- Actual Cost
= 4000-7500

$$
\text { = Rs. } 3500 \text { (A) }
$$

Calculation of Material Usage Variance $=(S Q-A Q) X$ Std. Price

$$
=(2000-2500) \times 2
$$

= Rs. 1000(A)

Calculation of Material Price Variance= (SP-AP) X Actual. Qty of Materials $=(2-3) \times 2500=2500(A)$

To check:

$$
\begin{aligned}
& \text { MCV = MQV + MPV } \\
& =1000(\mathrm{~A})+2500(\mathrm{~A}) \\
& =3500(\mathrm{~A})
\end{aligned}
$$

i) Material Mix Variance (MMV)It is that portion of the material usage variance which is change in the composition of material mix.

It arises due to the difference between the standard and actual composition of mixture of material.

Formula:

(Revised Quantity- Actual Quantity) X Standard Price

ii) Material Yield Variance (MYV)-

The difference between actual yield of material in manufacture and the standard yield valued at standard output is called material yield variance.
Formula:
(Standard Quantity- Revised Std. Quantity) X Std. Price

The yield variance may be caused by the defective methods of operation, sub- standard quality of material purchased, lack of due care in handling, lack of proper supervision.

We can say, $\underline{M Q V}=$ Material Yield Variance + Material Mix Variance

Ques. 4 The standard mix to produce one unit of product is as follows:

Material A
Material B
Material C
60 units @ Rs. 15 p.u.
Rs. 900
80 units @ Rs. 20 p.u.
Rs. 1600
100 units @ Rs. 25 p.u.
Rs. 2500

During the month of July, 10 units were produced and consumption was as follows:

Material A
Material B
Material C Total

640 units @Rs. 17.5 p.u.
Rs. 11200
960 units @ Rs. 18 p.u.
Rs. 17100
870 units @ Rs. 27.5 p.u.
2460 units

Rs. 23925
Rs.52,225

Calculate all material variances.
Solution.

$$
\text { Output= } 10 \text { units }
$$

Standard Cost			Actual Cost			
Qty.	Rate	Amt.	Qty.	Rate	Amt.	Revised Qty.
A 600	15	9000	640	17.5	11200	615
B 800	20	16000	950	18.0	17100	820
C $\frac{1000}{2400}$	25	$\underline{25000}$	$\frac{870}{2460}$	27.5	$\underline{23925}$	$\underline{1025}$
		50,000		52,225	2460	

Calculation of Material Cost Variance (MCV)
Standard cost- Actual Cost
= 50,000-52,225
= Rs. 2,225 (A)

Calculation of Material Price Variance (MPV)

(SP - AP) X Actual Qty.

$$
\begin{aligned}
& A=(15-17.5) \times 640=\text { Rs. } 1600(\mathrm{~A}) \\
& B=(20-18) \times 950=\text { Rs. } 1900(\mathrm{~F}) \\
& \mathrm{C}=(25-27.5) \times 870=\text { Rs. } 2175(\mathrm{~A}) \\
& \text { Total }=\text { Rs. } 1875(\mathrm{~A})
\end{aligned}
$$

Calculation of Material Usage Variance or Material Quantity Variance (MQV)

(SQ - AQ) X Standard Price

$$
\begin{aligned}
& A=(600-640) \times 15=\text { Rs. } 600(\mathrm{~A}) \\
& \mathrm{B}=(800-950) \times 20=\text { Rs. } 3000 \text { (A) } \\
& C=(1000-870) \times 25=\text { Rs. } 3250 \text { (F) } \\
& \text { Total }=\text { Rs. } 350 \text { (A) }
\end{aligned}
$$

To Check:

MCV = MPV + MUV
$=1875$ (A) +350 (A)
=Rs. 2,225 (A)

Calculation of Material Mix Variance (MMV)

Revised Std. Quantity- Actual Quantity) X Standard Price

Revised Value is total actual quantity in standard quantity ratio.

Calculation of Revised Standard Quantity:
Standard Quantity of A 600 units
Standard Quantity of B 800 units
Standard Quantity of C ------------- 1000 units

Ratio:
600: 800: 1000
3: 4: 5
Now, We devide the total actual quantity i. e. 2460 units in the ratio of standard quantity i.e. 3: 4: 5, we get
$A=615$ units
$B=820$ units
$C=1025$ units

Material Mix Variance

(Revised Std. Qty. - Actual Qty.) X Std. Price
$A=(615-640) \times 15=$ Rs. $375(A)$
$B=(820-950) \times 20=$ Rs. $2600(A)$
$C=(1025-870) \times 25=$ Rs. $3875(F)$
Total = Rs. 900 (F)

Material Yield Variance (MYV)

(Std. Quantity- Revised Standard Quantity) X Std. Price

$$
\begin{aligned}
& A=(600-615) \times 15=\text { Rs. } 625(A) \\
& B=(800-820) \times 20=\text { Rs. } 400(A) \\
& C=(1000-1025) \times 25=\text { Rs. } 625(A)
\end{aligned}
$$

Total $=$ Rs. 1250 (A)

To Check:

$$
\begin{aligned}
M Q V & =\text { MMV+ MYV } \\
& =900(F)+1250(A) \\
& =\operatorname{Rs.} 350(A)
\end{aligned}
$$

Ques.5. The standard material cost for normal mix of 1 metric tonne of chemical X is based on :

Chemicals	Usage (kg)	Price
per Kg		
A	240	6
B	400	12
C	640	10

During a month, 6.25 metric tonnes of X were produced from:

Chemicals	Consumption metric tonnes	Costs (Rs.)
A	1.6	11,200
B	2.4	30,000
C	$\underline{4.5}$	$\underline{47,250}$
	8.5	88,450

Analyse the variances.

Solution:

Actual output produced $=6.25$ metric tonnes

Note, 1 metric tonnes $=1000 \mathrm{~kg}$
6.25 metric tonnes $=6.25 \times 1000 \mathrm{~kg}=6250 \mathrm{~kg}$.

Actual output= 6250 Kg

Standard Cost			Actual Cost		
Qty. (3)	Rate	Amt.	Qty. Rate Quantity	Amt.	Revised
1500	6	9,000	(1) (2)		
2500	12	30,000	16007	11,200	1593.75
4000	10	40,000	240012.5	30,000	2656.25
		79,000	$\underline{4500} 10.5$	$\underline{47250}$	4250.00
			8500	88,450	8500

Working Note:

(1) Conversion of actual quantity metric tonnes into kg

1 metric tonnes $=1000 \mathrm{~kg}$
1.6 metric tonnes $=1.6 \times 1000=1600 \mathrm{~kg}$
2.4 metric tonnes $=2.4 \times 1000=2400 \mathrm{~kg}$
4.5 metric tonnes $=4.5 \times 1000=4500 \mathrm{~kg}$
(2) Calculation of rate of actual quantity where amount is given,
$A=11200 / 1600=$ Rs. 7
$B=30000 / 2400=$ Rs. 12.5
$\mathrm{C}=47250 / 4500=$ Rs. 10.5
(2) Calculation of standard quantity:

A -
1000 kg output $=240 \mathrm{~kg}$ material
$6250 \mathrm{~kg}=240 / 1000 \times 6250=1500 \mathrm{Kg}$

B -
1000 kg output $=400 \mathrm{~kg}$ material
$6250 \mathrm{~kg}=400 / 1000 \times 6250=1500 \mathrm{Kg}$
$\mathrm{C}-$
1000 kg output $=640 \mathrm{~kg}$ material
$6250 \mathrm{~kg}=640 / 1000 \times 6250=1500 \mathrm{Kg}$

Calculation of Material Cost Variance
=(MCV) = SC - AC
$=79000-88450=$ Rs. 9450

Calculation of Material Quantity Variance (MQV) = (Std. Qty. - Actual Qty.) X Std. Price
$A=(1500-1600) \times 6$ = Rs. 600 (A)
$B=(2500-2400) \times 12$
= Rs. 1200 (F)
$C=(4000-4500) \times 10$
= Rs. 5000 (A)

Calculation of Material Price Variance

$=$ (Std. Price - Actual Price) X Actual Quantity
$A=(6-7) \times 1600=$ Rs. $1600(A)$
$B=(12-12.5) \times 2400=$ Rs. $1200(A)$
$C=(10-10.5) \times 4500=$ Rs. $2250(A)$

To check:
$M C V=M Q V+M P V$

$$
\begin{aligned}
\text { MQV } & =600(A)+1200(F)+5000(A) \\
& =\text { Rs. } 4400(A) \\
M P V & =1600(A)+1200(A)+2250(A) \\
& =\text { Rs. } 5050(A) \\
M C V & =4400(A)+5050(A) \\
& =\text { Rs. } 9450(A)
\end{aligned}
$$

Hence, LHS = RHS
$A: B: C=1500: 2500: 4000=3: 5: 8$
Allocate actual quantity i.e. 8500 Kg in the ratio of standard quantity, we get
$A=8500 \times 3 / 16=1593.75 \mathrm{~kg}$
$B=8500 \times 5 / 16=2656.25 \mathrm{~kg}$
$C=8500 \times 8 / 16=4250 \mathrm{~kg}$

Material Mix Variance (MMV)

(Revised Quantity - Actual Quantity) X Standard Price
$A=(1593.75-1600) \times 6=$ Rs. $37.5(A)$
$B=(2656.25-2400) \times 12=$ Rs. $3075(F)$
$C=(4250-4500) \times 10=$ Rs. $2500(A)$
Total MMV = Rs. 537.5 (F)

Material Yield Variance (MYV)

(Standard Quantity - Revised Quantity) X Standard Price
$A=(1500-1593.75) \times 6=$ Rs. $562.5(A)$
$B=(2500-2656.25) \times 12=$ Rs. $1875(A)$
$C=(4000-4250) \times 10=$ Rs. $2500(A)$
Total MYV $=4937.5(\mathrm{~A})$

To check:

$M Q V=M M V+M Y V$

$$
\begin{aligned}
& =537.5(F)+4937.5(A) \\
& =4400(A)
\end{aligned}
$$

The value of MQV is already calculated i.e. 4400 (A)
Hence, LHS = RHS
\qquad

